- Model NO.: MGP-138KV SC 28M
- Conductor Circuit: Double Circuit
- Materials: Steel
- Style: Independence Tower
- We Can Design by Pls & Tower Software: According to Client Desing or Requirement
- Transport Package: Export Standard Package
- Origin: Shandong, China
- Usage: Crossing Tower, Tension Tower, Angle Tower, Terminal Tower, Branching Tower, According to Client′s Technical Specification
- Certification: ISO
- Standard: Nonstandard
- Structure: Monopole
- Trademark: MEGATRO
- Specification: AS PER CLIENT
- HS Code: 73082000
This photo refers to our 138KV SC 28M SUSPENSION STEEL POLE, which we design and produced for our overseas client over latest three years, it is heavy angle tension tower, with single over head ground wire at top of tower peak.
Â
Our 138KV SC 28M SUSPENSION STEEL POLE technical specification as follow:
1 | Line details - Circuit (DC) & KV. |
1 | Line details - Circuit (DC) & KV. | DC, 132 KV | ||
2 | Number of phases. | 3 | ||
3 | Tower design details | Ruling span | Wind span | Weight Span |
 | Tension towers | 180m | 200m | 250m |
Heavy angle (°) | 30-60° | |||
Deflection angle | 0-60° | |||
Terminal condition | 0-60° | |||
4 | Conductors Type ( ACSR/AAAC/etc) | Â AAAC Greely Conductor | ||
 | Conductor - Single/twin/quad/hexa | Single  | ||
5 | Earth-wire |  Single OPGW (With at least 24 Fiber along with accessories) | ||
6 | Insulators. | Â Fog type Disc Porcelain Insulators | ||
7 | Factor of safety. | 1.5 | ||
8 | Environmental condition of area (Temp). | Design Ambient Temperature 40 DegC | ||
9 | Tower Height. | 22 Mtr. (Subject to approval ) | ||
10 | Design Code | ASCE Manual No -72, IS 802 (part I & part II)-1997, IS 5613 (part I & part II), transmission line manual (publication no -268 ) | ||
11 | Type of Soil (Normal / Black cotton) | Â Yellowish clayey silty fine sand | ||
12 | Tower data | 132 KV D/C Steel Tubular Poles | ||
Shape of poles Circular /Polygonal | 12 sides | |||
Type of embedded Type/Anchor Base Type | Anchor Base Type | |||
No. of section | 3 | |||
Length of every section | 8500mm, 8500mm, 8000mm from bottom to top | |||
Thickness of every section | 12mm, 12mm, 10mm from bottom to top | |||
method of pole sections | Slip joint | |||
Method of welding | AWS D1:1 | |||
Standard of Galvanizing for pole and cross arms |
ASTM A133 Â |
|||
Standard of galvanizing for bolts , nuts and washers | ASTM A153 | |||
Pole and cross-arm steel | Q345B | |||
Base plate | Q345B | |||
Fastener (step bolt) | Chinese type grade 4.8 | |||
Material for anchor bolts | Chinese steel 45# |
Remark: above technical data only references for our client, we can design every type for our overseas clients.
Â
MEGATRO is a full service engineering company with a global reputation for delivering excellence and innovation in power transmission, transformation, distribution, and telecommunications systems. Our MEGATRO provide and design 138KV SC 28M SUSPENSION STEEL POLES mainly for our overseas client. Since 2004, MEGATRO focus mainly international market and had export many kind of transmission structures to overseas clients. MEGATRO has been manufacturing lattice transmission tower & tapered steel poles for lighting, traffic control, communication and utility applications. MEGATRO pioneered the development of transmission tower, telecom tower, substation, and other steel structure and was also at the forefront in the design of Transmission tower.
Over 10 years of experience and innovation in engineering, designing and building towers has evolved MEGATRO into its current form:
l       Full Turn-Key provider including site acquisition, engineering services, manufacturing,  field services-DAS, tech services, value added reseller and monitoring, maintenance and network ownership
l       Specialize in developing supplying and building wireless and wired networks and in-building telecommunications systems, as well as energy infrastructure
l       Single source from Design to System Integration
l       Top quality, ISO 9001 registered
A complete selection of towers including self-support, lattice steel tower, monopoles and guyed towers, form custom-designed radar towers to broadcast towers and energy infrastructure. MEGATRO carries a variety of related products including fall protection, transmission lines, antennas, obstruction lights, and accessories, and other products if client need, MEGATRO also tailored product as per client condition.
MEGATRO mainly design all kinds of towers and posts for:
a.     Telecoms
b.     Power transmission
c.     TV and Radio Broadcast
d.     Roads and City Development
e.     Wind energy solution
f.       Steel structure and workshop
Â
Our complete selection of towers includes:
a.     Self-supporting
b.     Monopoles
c.     Guyed towers
d.     Custom-designed radar towers
e.     Broadcast towers
f.       Power transmission
Â
MEGATRO also designs and manufactures tower related products including:
a.     Fall protection
b.     Antenna brackets
c.     Other accessories if needed by clients
Today, with over 10 years of experience and our commitment to excellence, MEGATRO remains an industry leader in the manufacture and design of steel tubular & angular & monopole structures for all Highway, Municipal, Custom, telecom, lighting and electric Utility applications. MEGATRO has a complete staff of professional engineering personnel trained in the PLS Pole program and three different manufacturing processes for producing steel towers, poles and other supports. We utilize the latest versions of PLS-CADD, PLS-POLE, TOWER, AutoCAD and other CAD software.
Â
The structure shall be designed according to load combinations given as per IEC 61936-1 and as illustrated below:
Normal loads
1 Dead weight load
2 Tension load
3 Erection load
4 wind load
Â
Exceptional loads
1 Switching forces
2 short-circuit forces
3 Loss of conductor tension
4 Earthquake forces
Moreover, MEGATRO is fully equipped and qualified to carry out Design Engineering services which includes:
√ Overhead Transmission line steel tower & Telecom steel tower
  Basic Design and Analysis
√ Shop Erection Drawings
√ As-Built Drawings
Â
MEGATRO performs in-house design activities specializing in electrical overhead transmission &telecom tower steel works, which include wind and earthquake loading, static analysis, stress analysis by finite element methods and fatigue. Our Engineering Department is boasting of highly qualified engineering who are conversant with international codes and standards. The work is carried out with extensive use of CAE/CAD via a large of computer network. The computer hardware & drafting software are liked to the CNC workshop equipment for downloading of information thereby eliminating error and saving valuable production time.
Â
Besides, MEGATRO is one of the few manufactures who assemble a face of 132KV DC steel tubular poles. This attention to quality may not be the cheapest process but it does insure every tower meets our high standards of quality. And it helps to reduce on-site construction cost due to mismatched assemblies. After fabrication all 132KV DC steel tubular poles are delivered to the galvanizing facility to be Hot DIP Galvanized. Towers are processed through the facility by Caustic Cleaning, Pickling, and then Fluxing. These strict procedures insure years of maintenance free towers. MEGATRO' 132KV DC steel tubular poles systems can accommodate a variety of cross-arm. MEGATRO also offers a wide variety of accessories and mounts.
Fabrication standard: Chinese Standard or other standard which client accepted
A) Dimension and tolerance for angle are according to GB/T1591-1994, similar to EN 10056-1/2
B) Hot dip galvanization in accordance with GB/T 13912-2002, which similar to ASTM A 123
C) The welding will be performance in accordance with AWS D1.1 or CWB standard
D) All fastener galvanization conform to ASTM A153 requirements.
Package: Both parties discuss before delivery
Port of Loading: Qingdao Port
Lead Time: One month or based on the customer's needs ( for time being our capacity about 5000 tons one month, and can meet client requirements)
Minimum order: 1 set
General Fabrication Requirements
Here is general fabrication requirements for our transmission tower; however, both parties must discuss all drawings and confirm all shop drawings, technical specification, and which standard to conform.
Before mass production, we must received all signed approved shop drawings and technical documents from our client.
Â
Our Fabrication shall be in strict accordance with detail Drawings prepared by the Contractor and approved by the Engineer. Fabrication shall begin after the approval of the shop assembly and tests.
     Â
Shearing
     Â
Shearing and cutting shall be performed carefully and all portions of the work which will be exposed to view after completion shall be finished neatly. Manually guided cutting torches shall not be used.
Â
All material over 13 (or 12) mm thick shall be cold sawn or machine flame cut.
Cropping or shearing shall be allowed for material thickness of 13 mm or less.
Flame cutting of high yield steel shall be preceded by a slight preheat operation by passing the cutting flame over the part to be cut.
All flame-cut edges shall be ground clean.
     Â
Bending
Â
Bending shall be carried out in such a manner as to avoid indentation and surface damage. All bending over 5o, or high yield steel, shall be performed while the material is hot.
Â
Welding
Â
No welding shall be done unless prior approval has been obtained from the Engineer.
Welding shall not be allowed at tower attachment points for conductor, shield-wire, insulators or associated assemblies or brackets.
Â
Sub-punching
Â
All holes in structural steel less than 10 mm thickness may be punched to full size unless otherwise noted on the approved Drawings. Holes shown on the Drawings as drilled holes and all holes in structural steel 10 mm or more in thickness and tension members of cross-arms shall be drilled or sub-punched and reamed.
Â
All holes shall be clean cut and without torn or ragged edges. All burrs resulting from reaming or drilling shall be removed. All holes shall be cylindrical and perpendicular to the member.
Â
Where necessary to avoid distortion of the holes, holes close to the points of bends shall be made after bending.
Â
Punching
Â
For punching to full size, the diameter of the punch shall be 1.0 mm larger than the nominal diameter of the bolt, and the diameter of the die shall not be more than 1.5mm larger than the diameter of the punch. For sub-punching, the diameter of the punch shall be 4 mm smaller than the nominal diameter of the bolt, and the diameter of the die shall be not more than 2 mm larger than the diameter of the punch. Sub-punching for reamed work shall be such that after reaming no punch surface shall appear in the periphery of the hole.
Â
Hole Size
Â
Where holes are reamed or drilled, the diameter of the finished hole shall be not greater than the nominal diameter of the bolt plus 1.0 mm.
Â
Â
Accuracy
Â
All holes shall be spaced accurately in accordance with the Drawings and shall be located on the gauge lines.
Â
The maximum allowable variation in hole spacing from that indicated on the Drawings for all bolt holes shall be 0.8 mm.
Â
Fabrication Tolerances
Â
A specification for tolerances shall be submitted for approval by the Engineer prior to commencement of fabrication.
Â
Bolt List
Â
A complete list of bolts showing their lengths and the members, which they are to connect shall be given on the erection diagrams.
Â
Locking Devices
Â
Locking devices for tower bolts will not be required, but point punching shall be performed.
Â
Anti-theft Fasteners
     Â
Appropriate anti-theft fasteners for example Huck-bolting shall be applied on all the towers up to the level of anti-climbing devices, to prevent theft of tower members.
Piece Marks
Â
All pieces shall be stamped before galvanizing with the piece marks shown on the erection Drawings, with the marking not less than 20 mm high placed in the same relative location on all pieces. The marking shall be plainly visible after galvanizing.
Â
Galvanizing
Â
All material shall be hot-dip galvanized after fabrication in accordance with the latest revision of GB/T 13912-2002 or ASTM Specification A 123.
Â
Material that has been rejected because of bare spots or other coating defects shall either be stripped and re-galvanized, or the uncoated areas shall be recoated by an approved method.
Â
All plates and shapes which have been warped by the galvanizing process shall be straightened by being re-rolled or pressed. The material shall not be hammered or otherwise straightened in a manner that will injure the protective coating.
Â
Approval shall be secured from the Engineer if galvanizing is done outside of the Contractor's plant.
Â
All galvanized steelwork shall be protected against white storage stain by using an approved dichromate solution treatment immediately following galvanizing.
Â
Â
APPLICABLE STANDARD AND CODES
All towers manufactured and design shall be generally in accordance with latest revision of the following standards except where specifically directed otherwise.
General
IEC 60826Â Â Â -Â Design criteria of overhead lines
IEC 60652Â Â Â -Â Loading tests on overhead line structures
ISO 1459Â Â Â -Â Metallic coatings - Protection against corrosion by Hot Dip Galvanizing
ISO 1461Â Â Â -Â Hot dip galvanized coatings on fabricated iron and steel articles
ISO 12944Â Â Â -Â Paint coatings, corrosion protection, and structural steelwork
ISO 898-1Â Â Â -Â Mechanical properties of fasteners. Part 1-Bolts, Screws and studs
ISO 630Â Â Â -Â Structural Steels - plates, wide flats, bars, sections and profiles
ISO 657Â Â Â -Â Hot rolled structural steel plates tolerances on dimensions and shape
ISO 7411Â Â Â -Â Hexagon Bolts for high strength structural bolting with large width across flats
ISO 657-5Â Â Â -Â Hot rolled Structural Steel Sections equal and unequal leg angles
ISO 7452Â Â Â -Â Hot rolled structural steel plates tolerances on dimensions and shape
BS EN 50341-1Â - Overhead electrical lines exceeding AC 45kV -General Requirements
BS 8004Â Â Â -Â Code of Practice for Foundations
BS 8110Â Â Â -Â Structural use of concrete
ANSI10-97Â Â Â - Design of latticed steel transmission structures
IEC 60050 (151)Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â International Electro-technical Vocabulary
                                      Part 51 Electrical and Magnetic Devices
IEC 60050 (601)Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Chapter 601: Generation, transmission and distribution of electricity-General
IEC 60050 (601)Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Chapter 601: Generation, transmission and distribution of electricity-Operation
IEC 60059Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â IEC standard current ratings
Chinese Standard
No | Code | DESCRIPTION |
1 | GB/T2694-2003 | Power Transmission line Steel tower - Technical requirements for manufacturing |
2 | JGJ81-2002 | Technical specification for welding for steel structure of building |
3 | GB9787-88 | Measuring and allowable tolerance for hot-rolled equal angle |
4 | GB709-88 | Measuring and allowable tolerance for hot-rolled plate and strip |
5 | GB/T699-1999 | Quality Carbon Structural Steel |
6 | GB/T1591-1994 | Low alloy high strength structural Steel |
7 | GB700-88 | Carbon Structural Steel |
8 | GB222-84 | Method of sampling steel for determination of chemical composition and permissible variations |
9 | GB/T228-2002 | Method for Tensile testing of metals |
10 | GB/T232-1999 | Method for Bending test of metals |
11 | GB/T5117-1995 | Carbon Welding Rod |
12 | GB/T5118-1995 | Low Alloy Welding Rod |
13 | GB/T8110-1995 | Welding wires for gas shielding arc welding of carbon and low alloy steels |
14 | GB/T10045-2001 | Carbon steel flux cored electrodes for arc welding |
15 | JB/T7949-1999 | Weld outer dimensions for steel construction |
16 | GB50205-2001 | Test Standard for Acceptance of Steel Structure |
17 | GB/T470-1997 | Zinc Ingot |
18 | GB3098.1-2000 | Mechanical properties of fasteners-Part 1:Bolts, screws and studs |
19 | GB3098.2-2000 | Mechanical properties of fasteners-Part2: Nuts, and thread |
20 | GB3098.3-2000 | Mechanical properties of fasteners-Part3: Fastening screw |
21 | GB/T5780-2000 | Helical Bolts Grade C |
22 | GB/T41-2000 | Helical Nuts Grade C |
23 | GB/T90-2002 | Flat Washer Grade C |
24 | GB/T13912-2002 | Metal Coating, Technical Requirement and Test Method for Hot-dip galvanized Metal Parts |
Â
 American Standards:
Standard | Description |
ASTM A6/A6M | Standard specification for general requirements for rolled structural steel bars, plates, and sheet piling. |
ASTM - 6   | - General Requirements for delivery of Rolled Steel Plates, Shapes, sheet Piling Bars for structural used |
ASTM A36/A36-M-97a | Standard specification for Carbon structural steel |
ASTM A123 / A123M-02 | Standard specification for Zinc (Hot-Dip Galvanized) Coatings on iron and steel products |
ASTM A143 / A143M-03 | Standard Practise for Safeguarding Against Embitterment of Hot-Dip Galvanized Structural Steel Products and Procedure for Detecting Embitterment |
ASTM A153/ A153M-05 | Standard specification for zinc coating (Hot-Dip) on iron and steel hardware |
ASTM A - 194Â | -Â Â Grade for bolt |
ASTM A239 | Standard practice for locating the thinnest spot in a zinc (Galvanized) Coating on Iron or Steel Articles |
ASTM A242 | Standard specification for High-Strength Low-Alloy Structural steel |
ASTM A307 | Standard Specification for Carbon Steel Bolts and Studs, 60000 PSI Tensile strength |
ASTM A370-06 | Standard Test Methods and Definitions for Mechanical Testing of Steel Products |
ASTM A325 | Standard Specification for structural bolts, steel, Heat treated 120/105 ksi minimum tensile strength |
ASTM A-325 or A-354 | - Galvanized hexagonal head of connection bolt |
ASTM A325-97 | Standard Specification for High-strength Bolts for structural steel Joints |
ASTM A384 / A384M-02 | Standard Practise for Safeguarding Against Warpage and Distortion During Hot-Dip Galvanizing of Steel Assemblies. |
Titanium Sunglasses Titanium Sunglasses,Eyewear Titanium,Titanium Frame Sunglasses,Sunglasses With Titanium Frames Danyang Hengshi Optical Glasses Co., Ltd. , https://www.hengshi-optical.com |